import pandas as pd from sklearn.linear_model import LassoCV, Lasso from sklearn.preprocessing import StandardScaler import json import sys # 重新配置标准输出流的编码为 UTF-8 sys.stdout.reconfigure(encoding='utf-8') def load_data(file_path): with open(file_path, 'r', encoding='utf-8') as file: json_str = file.read() # 解析 JSON 字符串 data_dict = json.loads(json_str) # 转为 Pandas DataFrame data = pd.DataFrame(data_dict) # # """加载数据并重命名列""" # data = pd.read_csv(file_path) new_names = [f'q{i}' for i in range(7, 189)] data.columns.values[6:189] = new_names return data def prepare_data(data): data['month'] = data['month'].astype(int) data['year'] = data['year'].astype(int) # """选择所需的数据,计算平均值并合并数据""" new_names = [f'q{i}' for i in range(7, 189)] # 确保此列名称与选择特征匹配 selected_data = ( data[(data['year'] == 2021) | (data['year'] == 2022) | ((data['year'] == 2023) & (data['month'] <= 5))] .groupby('area_name')[new_names].mean().reset_index() ) all_score_2023_06 = data[(data['year'] == 2023) & (data['month'] == 6)].dropna(subset=['all_score'])[ ['area_name', 'all_score']] model_data = pd.merge(selected_data, all_score_2023_06, on='area_name') return model_data def train_lasso(X, y): """训练LASSO回归模型并返回最佳模型和预测值""" scaler = StandardScaler() X_scaled = scaler.fit_transform(X) lasso_cv = LassoCV(cv=16, random_state=42).fit(X_scaled, y) best_lambda = lasso_cv.alpha_ lasso_model = Lasso(alpha=best_lambda).fit(X_scaled, y) predictions = lasso_model.predict(X_scaled) return lasso_model, predictions, best_lambda, lasso_cv if __name__ == "__main__": # 1. 加载数据 file_path = sys.argv[1] data = load_data(file_path) # data = load_data( # "H:/develop/dama/java/buliangfanying/src/main/resources/python/二级指标加权分数.csv") # 替换为您的实际文件路径 # 2. 准备数据 model_data = prepare_data(data) # 2.1移除所有值相同的列 model_data = model_data.loc[:, model_data.nunique() > 1] # 3. 准备特征和目标变量 feature_names = model_data.drop(columns=['area_name', 'all_score']).columns.tolist() X = model_data[feature_names].values y = model_data['all_score'].values # 保留但不参与计算的列 columns_to_exclude = ['area_name'] # 移除不需要参与计算的列 X_for_model = model_data.drop(columns=columns_to_exclude) # 4. 训练模型 lasso_model, lasso_predictions, best_lambda, lasso_cv = train_lasso(X, y) result_df = pd.DataFrame({ 'area_name': model_data['area_name'], 'predicted_score': lasso_predictions }) # 将 DataFrame 转换为 JSON 字符串并输出 print(json.dumps(json.loads(result_df.to_json(orient='records')), ensure_ascii=False, indent=4))